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LETTER TO THE EDITOR 

Monte Carlo renormalisation group for polymers 

A Baumgartner 
IFF, KFA Julich, Postfach 1913, 5170 Julich, West Germany 

Received 23 November 1979 

Abstract. A Monte Carlo renormalisation-group method for polymers is developed and 
applied to the freely jointed polymer model with excluded volume potential. Both the 
exponent and the amplitude of the end-to-end correlation length are obtained. 

Recently Monte Carlo (MC) simulation and renormalisation group (RG) analysis have 
been successfully combined in investigating the critical properties of Ising and Potts 
models (Ma 1976, Swendsen 1979). In this Letter a MCRG method for polymer models 
is presented which uses a block transformation technique based on de Gennes’ 
suggestion of renormalisation along the chemical sequence of the chain (de Gennes 
1977). The MCRG approach provides several advantages in comparison with ordinary 
MC simulations and RG investigations. The correlation length exponent is estimated to 
be Y = 0,589 f 0.003, which is in good agreement with field theoretical RG calculations 
(Le Guillou and Zinn-Justin 1977). Critical amplitudes and crossover scaling functions 
of the end-to-end correlation length and related quantities are accessible. Moreover, 
the MCRG method proposed here is general and is not restricted to a certain class of 
polymer models. Thus attractive interactions, which often play an essential role in 
polymer problems, as well as steric constraints of the chemical structure may be 
included in the MCRG calculations. 

The MCRG method for polymers will be illustrated by an application to the 
‘pearl-necklace’ model. This polymer model consists of No+ 1 hard spheres of 
diameter ho indexed from 1 to No+ 1, which are connected by No bonds of length lo. 
The angles between neighbouring bonds are not restricted. The quantity in which we 
are interested here is the end-to-end correlation length 

RUo, ho, No) = ( ( Q -  rNo+1)2)1’2 (1) 
where ri are the coordinates of the ith sphere and the brackets (. . .) denote the average 
over all possible configurations {r l , .  . . , r N + I } .  The scaling law for the correlation 
length may be written (Riedel 1972, de Gennes 1975, Daoud and Jannink 1976) 

(2) (10, ho, No) = ~ o ~ ; ; ’ f [ ~ o ( ~ o / ~ o ) d ’ ~ ‘ l  

where d is the dimension, vt is the tricritical exponent and q!Jt the corresponding 
crossover exponent. For potentials with a repulsive part only, as in our case, the 
tricritical exponents reduce to their mean field values vt = YMF = 4 for all dimensions d. 
In the critical domain N + CO, we recover the critical scaling law 

(3) 1 f ( x )  = Ax ( x > o ;  Y t = Y M F = y ) .  
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The value Y = 0388 f 0.001 for d = 3 has been obtained using field theoretical renor- 
malisation-group methods (Le Guillou and Zinn-Justin 1977). For ho=O, f is 
independent of N, andf = 1 in the pearl-necklace model (see e.g. Flory 1969). From (2) 
and (3) we have 

R(l0, ho, No)=AlosgN” ( N + w ,  60>0) (4a 1 
(4b) c = d ( v  - V M F ) / ~ M F  

so = ho/lo. (4c) 

1 
( YMF = ~ M F  = 

A similar law with Y = 5 was obtained without using scaling ideas by Flory (1949) and 
Edwards (1965). 

The usual presentation of renormalisation groups is based on a thinning of the 
number of degrees of freedom in momentum space or in real space. These techniques 
can, of course, be applied to polymers using the n = 0 theorem (de Gennes 1972, 
Hilhorst 1977). However, to establish the MCRG method for polymers we have 
proceeded in a different way, following de Gennes’ suggestion (1977) which is based on 
the one-dimensional structure of the chain. The idea is shown in figure 1. We start with 
No bonds of length lo and sphere diameter ho. As in block transformation techniques in 
spin systems (see e.g. Kadanoff 1976) we group the bonds in No/s  consecutive ‘block 
bonds’, each composed of s original bonds (s is the scale factor). The length I l  of the 
block bonds is identified as the average correlation length of s original bonds 

( 5 )  
2 112 11 = ((rj - rj+s) ) 

which is estimated from a MC simulation. j was chosen so that ll was a representative 
average correlation length which did not exhibit a significant dependence on the finite 
system size No (details will be published elsewhere). For details of the MC simulation 

Figure 1. Illustration of the block-transformation technique in the pearl-necklace model. 
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method we refer to the article of Baumgartner and Binder (1979). But it should be 
noted that the MCRG principle is independent of the particular MC method. 

The renormalised coupling constant h is estimated using the invariance condition 

R(lo, ho,No)=R(li, hi,No/s) (6) 
which is analogous to the usual renormalisation-group approach in which the RG 
transformation leaves the free energy unchanged (see e.g. Kadanoff 1976). In practice 
h l  is estimated by MC simulation. For various trial values hi1’, hi2), . . . the end-to-end 
correlation lengths R(l l ,  h!”, No/s ) ,  R(ll ,  hi2’, No/s) ,  . . . are calculated. By compar- 
ing with R(lo, ho, No) as given by equation (6) a value for hl is obtained. 

We iterate the process, starting with No bonds of length l k  and coupling constant hk 
and going to a transformed set of variables { l k + l ,  h k t l } .  When the process has been 
repeated a sufficient number of times the large block-bonds have the asymptotic 
behaviour 

l k  = A l o S C k S Y k  ( k  >> 1) (7) 

l k + l / l k  = S Y ( S k / S k + l ) ‘  ( k  >> 1) (8) 

according to equation (4a)  and 

on using equations (4a) and (6). Clearly the fixed point of the transformation (8) is 
given by 

l k + l / l k  = s y  ( k  +a) (9) 

8 k  S&+l +a*  ( k  + 00). (10) 

with 

The fixed point has the following physical interpretation. Let us apply the RG 
transformation at the fixed point So = S * .  Then the transformation leaves the coupling 
constant unchanged, i.e. S k  = S* for all k. On the other hand equation (8) tells us that in 
this case 

(So = S * ) .  (11) 

A = (l/S*)‘, (12) 

w(k i -1 )  
/&+I = l k S Y  = 10s 

A comparison of equation (7) and equation (11) (with S k  = S*) yields 

This result suggests that in general in the pearl-necklace model the end-to-end 
correlation length follows the law 

R(1, h, N )  = l(S/S*)‘N” ( N  >> 1). (13) 
This is supported by an analysis of recent MC simulations on the same model (Bruns 
1977), which will be reported elsewhere. 

In figure 2 the flow lines representing the iteration process { l k ,  S k } + { l k + l ,  & + l }  for 
k = 0, 1 ,2 ,  . . . in the pearl-necklace model for d = 3 dimensions are shown. We used a 
transformation with scale factor s = 2 applied to chains of lengths NO = 8 and No = 16. 
According to equations (8)-(10) the exponent v is the value of In ( l k + l / l k ) / h  2 for 
In ( S k / S k + l )  = 0. We estimate v = 0.589 * 0.003 (compare lower part of figure 2). In 
the same manner the fixed point value S* was estimated as 6*=0.530*0.003 
(compare upper part of figure 2). It should be noted that the crossover exponent &F 
defined by equation (46) may be obtained from the slope at the fixed point according to 
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Figure 2. The renormalised coupling constant 8 k  and bond length In ( / k + ~ / l k )  plotted 
against In (&/&+I) .  These results were obtained with scale factors = 2 for chains of lengths 
NO = 8 and NO = 16. The slope of In (lk+l/lk)/ln 2 is indicated by the line y = v + cx/ln 2, 
where Y = 0,589 and c = 0.762. 0 NO = 8;  U No = 16. 

equation (8) (lower part of figure 2). As expected the result is consistent with the 
prediction 4 M ~  = 1. 

In practice the same flow lines are obtained irrespective of the initial values 60 and lo. 
The full curves in figure 2 also yield corrections to the leading asymptotic law (4a) .  
These corrections and applications of the MCRG method to other systems will be 
discussed elsewhere. 

I would like to thank Professor K Binder for many valuable discussions and suggestions. 
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