Monte Carlo renormalisation group for polymers

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1980 J. Phys. A: Math. Gen. 13 L39
(http://iopscience.iop.org/0305-4470/13/3/002)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 31/05/2010 at 04:45

Please note that terms and conditions apply.

LETTER TO THE EDITOR

Monte Carlo renormalisation group for polymers

A Baumgärtner
IFF, KFA Jülich, Postfach 1913, 5170 Jülich, West Germany

Received 23 November 1979

Abstract

A Monte Carlo renormalisation-group method for polymers is developed and applied to the freely jointed polymer model with excluded volume potential. Both the exponent and the amplitude of the end-to-end correlation length are obtained.

Recently Monte Carlo (MC) simulation and renormalisation group (RG) analysis have been successfully combined in investigating the critical properties of Ising and Potts models (Ma 1976, Swendsen 1979). In this Letter a MCRG method for polymer models is presented which uses a block transformation technique based on de Gennes' suggestion of renormalisation along the chemical sequence of the chain (de Gennes 1977). The MCRG approach provides several advantages in comparison with ordinary MC simulations and RG investigations. The correlation length exponent is estimated to be $\nu=0.589 \pm 0.003$, which is in good agreement with field theoretical RG calculations (Le Guillou and Zinn-Justin 1977). Critical amplitudes and crossover scaling functions of the end-to-end correlation length and related quantities are accessible. Moreover, the MCRG method proposed here is general and is not restricted to a certain class of polymer models. Thus attractive interactions, which often play an essential role in polymer problems, as well as steric constraints of the chemical structure may be included in the mCRG calculations.

The mCrg method for polymers will be illustrated by an application to the 'pearl-necklace' model. This polymer model consists of $N_{0}+1$ hard spheres of diameter h_{0} indexed from 1 to $N_{0}+1$, which are connected by N_{0} bonds of length l_{0}. The angles between neighbouring bonds are not restricted. The quantity in which we are interested here is the end-to-end correlation length

$$
\begin{equation*}
R\left(l_{0}, h_{0}, N_{0}\right)=\left\langle\left(\boldsymbol{r}_{1}-\boldsymbol{r}_{N_{0}+1}\right)^{2}\right\rangle^{1 / 2} \tag{1}
\end{equation*}
$$

where \boldsymbol{r}_{i} are the coordinates of the i th sphere and the brackets $\langle.$.$\rangle denote the average$ over all possible configurations $\left\{\boldsymbol{r}_{1}, \ldots, r_{N+1}\right\}$. The scaling law for the correlation length may be written (Riedel 1972, de Gennes 1975, Daoud and Jannink 1976)

$$
\begin{equation*}
R\left(l_{0}, h_{0}, N_{0}\right)=l_{0} N_{0}^{\nu_{\mathrm{t}}} f\left[N_{0}\left(h_{0} / l_{0}\right)^{d / \phi_{t}}\right] \tag{2}
\end{equation*}
$$

where d is the dimension, ν_{t} is the tricritical exponent and ϕ_{t} the corresponding crossover exponent. For potentials with a repulsive part only, as in our case, the tricritical exponents reduce to their mean field values $\nu_{\mathrm{t}}=\nu_{\mathrm{MF}}=\frac{1}{2}$ for all dimensions d. In the critical domain $N \rightarrow \infty$, we recover the critical scaling law

$$
\begin{equation*}
f(x)=A x^{\nu-\nu_{\mathrm{t}}} \quad\left(x>0 ; \nu_{\mathrm{t}}=\nu_{\mathrm{MF}}=\frac{1}{2}\right) . \tag{3}
\end{equation*}
$$

The value $\nu=0.588 \pm 0.001$ for $d=3$ has been obtained using field theoretical renor-malisation-group methods (Le Guillou and Zinn-Justin 1977). For $h_{0}=0, f$ is independent of N, and $f=1$ in the pearl-necklace model (see e.g. Flory 1969). From (2) and (3) we have

$$
\begin{array}{ll}
R\left(l_{0}, h_{0}, N_{0}\right)=A l_{0} \delta_{0}^{c} N^{\nu} & \left(N \rightarrow \infty, \delta_{0}>0\right) \\
c=d\left(\nu-\nu_{\mathrm{MF}}\right) / \phi_{\mathrm{MF}} & \left(\nu_{\mathrm{MF}}=\phi_{\mathrm{MF}}=\frac{1}{2}\right) \\
\delta_{0}=h_{0} / l_{0} . & \tag{4c}
\end{array}
$$

A similar law with $\nu=\frac{3}{5}$ was obtained without using scaling ideas by Flory (1949) and Edwards (1965).

The usual presentation of renormalisation groups is based on a thinning of the number of degrees of freedom in momentum space or in real space. These techniques can, of course, be applied to polymers using the $n=0$ theorem (de Gennes 1972, Hilhorst 1977). However, to establish the MCRG method for polymers we have proceeded in a different way, following de Gennes' suggestion (1977) which is based on the one-dimensional structure of the chain. The idea is shown in figure 1 . We start with N_{0} bonds of length l_{0} and sphere diameter h_{0}. As in block transformation techniques in spin systems (see e.g. Kadanoff 1976) we group the bonds in N_{0} / s consecutive 'block bonds', each composed of s original bonds (s is the scale factor). The length l_{1} of the block bonds is identified as the average correlation length of s original bonds

$$
\begin{equation*}
l_{1}=\left\langle\left(\boldsymbol{r}_{j}-\boldsymbol{r}_{j+s}\right)^{2}\right\rangle^{1 / 2} \tag{5}
\end{equation*}
$$

which is estimated from a MC simulation. j was chosen so that l_{1} was a representative average correlation length which did not exhibit a significant dependence on the finite system size N_{0} (details will be published elsewhere). For details of the MC simulation

Figure 1. Illustration of the block-transformation technique in the pearl-necklace model.
method we refer to the article of Baumgärtner and Binder (1979). But it should be noted that the MCRG principle is independent of the particular mC method.

The renormalised coupling constant h_{1} is estimated using the invariance condition

$$
\begin{equation*}
R\left(l_{0}, h_{0}, N_{0}\right)=R\left(l_{1}, h_{1}, N_{0} / s\right) \tag{6}
\end{equation*}
$$

which is analogous to the usual renormalisation-group approach in which the RG transformation leaves the free energy unchanged (see e.g. Kadanoff 1976). In practice h_{1} is estimated by MC simulation. For various trial values $h_{1}^{(1)}, h_{1}^{(2)}, \ldots$ the end-to-end correlation lengths $R\left(l_{1}, h_{1}^{(1)}, N_{0} / s\right), R\left(l_{1}, h_{1}^{(2)}, N_{0} / s\right), \ldots$ are calculated. By comparing with $R\left(l_{0}, h_{0}, N_{0}\right)$ as given by equation (6) a value for h_{1} is obtained.

We iterate the process, starting with N_{0} bonds of length l_{k} and coupling constant h_{k} and going to a transformed set of variables $\left\{l_{k+1}, h_{k+1}\right\}$. When the process has been repeated a sufficient number of times the large block-bonds have the asymptotic behaviour

$$
\begin{equation*}
l_{k} \simeq A l_{0} \delta_{k}^{c} s^{\nu k} \quad(k \gg 1) \tag{7}
\end{equation*}
$$

according to equation (4a) and

$$
\begin{equation*}
l_{k+1} / l_{k} \simeq s^{\nu}\left(\delta_{k} / \delta_{k+1}\right)^{c} \quad(k \gg 1) \tag{8}
\end{equation*}
$$

on using equations (4a) and (6). Clearly the fixed point of the transformation (8) is given by

$$
\begin{equation*}
l_{k+1} / l_{k}=s^{\nu} \quad(k \rightarrow \infty) \tag{9}
\end{equation*}
$$

with

$$
\begin{equation*}
\delta_{k} \rightarrow \delta_{k+1} \rightarrow \delta^{*} \quad(k \rightarrow \infty) . \tag{10}
\end{equation*}
$$

The fixed point has the following physical interpretation. Let us apply the RG transformation at the fixed point $\delta_{0}=\delta^{*}$. Then the transformation leaves the coupling constant unchanged, i.e. $\delta_{k}=\delta^{*}$ for all k. On the other hand equation (8) tells us that in this case

$$
\begin{equation*}
l_{k+1}=l_{k} s^{\nu}=l_{0} s^{\nu(k+1)} \quad\left(\delta_{0}=\delta^{*}\right) \tag{11}
\end{equation*}
$$

A comparison of equation (7) and equation (11) (with $\delta_{k}=\delta^{*}$) yields

$$
\begin{equation*}
A=\left(1 / \delta^{*}\right)^{c} \tag{12}
\end{equation*}
$$

This result suggests that in general in the pearl-necklace model the end-to-end correlation length follows the law

$$
\begin{equation*}
R(l, h, N)=l\left(\delta / \delta^{*}\right)^{c} N^{\nu} \quad(N \gg 1) \tag{13}
\end{equation*}
$$

This is supported by an analysis of recent MC simulations on the same model (Bruns 1977), which will be reported elsewhere.

In figure 2 the flow lines representing the iteration process $\left\{l_{k}, \delta_{k}\right\} \rightarrow\left\{l_{k+1}, \delta_{k+1}\right\}$ for $k=0,1,2, \ldots$ in the pearl-necklace model for $d=3$ dimensions are shown. We used a transformation with scale factor $s=2$ applied to chains of lengths $N_{0}=8$ and $N_{0}=16$. According to equations (8)-(10) the exponent ν is the value of $\ln \left(l_{k+1} / l_{k}\right) / \ln 2$ for $\ln \left(\delta_{k} / \delta_{k+1}\right)=0$. We estimate $\nu=0.589 \pm 0.003$ (compare lower part of figure 2). In the same manner the fixed point value δ^{*} was estimated as $\delta^{*}=0.530 \pm 0.003$ (compare upper part of figure 2). It should be noted that the crossover exponent ϕ_{MF} defined by equation ($4 b$) may be obtained from the slope at the fixed point according to

Figure 2. The renormalised coupling constant δ_{k} and bond length $\ln \left(l_{k+1} / l_{k}\right)$ plotted against $\ln \left(\delta_{k} / \delta_{k+1}\right)$. These results were obtained with scale factor $s=2$ for chains of lengths $N_{0}=8$ and $N_{0}=16$. The slope of $\ln \left(l_{k+1} / l_{k}\right) / \ln 2$ is indicated by the line $y=\nu+c x / \ln 2$, where $\nu=0.589$ and $c=0.762$. $\bigcirc N_{0}=8 ; \square N_{0}=16$.
equation (8) (lower part of figure 2). As expected the result is consistent with the prediction $\phi_{\mathrm{MF}}=\frac{1}{2}$.

In practice the same flow lines are obtained irrespective of the initial values δ_{0} and l_{0}. The full curves in figure 2 also yield corrections to the leading asymptotic law ($4 a$). These corrections and applications of the MCRG method to other systems will be discussed elsewhere.

I would like to thank Professor K Binder for many valuable discussions and suggestions.

References

Baumgärtner A and Binder K 1979 J. Chem. Phys. 712541
Bruns N 1977 J. Phys. A: Math. Gen. 101963
Daoud M and Jannink G 1976 J. Physique 37973
Edwards S F 1965 Proc. R. Soc. 85613
Flory P J 1949 J. Chem. Phys. 171347
_- 1969 Statistical Mechanics of Chain Molecules (New York: Interscience) ch 1
de Gennes P G 1972 Phys. Lett A 38339

- 1975 J. Physique Lett. 3655
- 1977 Riv. Nuovo Cim. 7363

Hilhorst H J 1977 Phys. Rev. B 161253
Kadanoff L P 1976 Ann. Phys. 100359
Le Guillou J C and Zinn-Justin J 1977 Phys. Rev. Lett. 3995
Ma S-K 1976 Phys. Rev. Lett. 37461
Riedel E 1972 Phys. Rev. Lett. 38675
Swendsen R H 1979 Phys. Rev. Letr. 42859

